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The permeability of geological formations which contain fractures with a power-law size distribution is
addressed numerically by solving the coupled Darcy equations in the fractures and in the surrounding porous
medium. Two reduced parameters are introduced which allow for a unified description over a very wide range
of the fracture characteristics, including their shape, density, size distribution, and possibly size-dependent
permeability. Two general models are proposed for loose and dense fracture networks, and they provide a good
representation of the numerical data throughout the investigated parameter range.
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I. INTRODUCTION

Fractures and fracture networks strongly influence the
flow properties of many geological formations, such as aqui-
fers and oil reservoirs. Some aspects of this problem are
discussed in, e.g., Sahimi �1�, Adler and Thovert �2�, and the
National Research Council �3�. Recent advances in modeling
of flow and transport phenomena in fractured rock are re-
viewed by Berkowitz �4�. The determination of their single-
phase, steady-state effective permeability is addressed here
by solving numerically the flow equations in a three-
dimensional discrete description of the fracture network and
of the embedding matrix.

In a series of earlier papers, various situations of increas-
ing complexity were addressed. The connectivity of the frac-
ture network is of course of primary importance for flow
properties. Huseby et al. �5� investigated the geometrical and
topological properties of networks of randomly located and
oriented fractures, with similar sizes but possibly different
shapes. A dimensionless density �� was introduced, which
incorporates a shape factor �it is defined in the next section,
along with the other quantities mentioned here�. In these
terms, a unique value of the percolation threshold was found
to apply for a wide range of fracture shapes or mixture of
shapes. This parameter was also shown to control the effec-
tive permeability of the fracture networks �6�. Later on, the
influence of the matrix flow was taken into account by
Bogdanov et al. �7�. The predominant influence of the frac-
ture network connectivity, which is described by ��, was
demonstrated. Note that transient compressible flow and
steady-state two-phase flow were also investigated �8,9�.

However, fractures in real networks have generally vari-
ous sizes; such fractures are called polydisperse in contrast
with monodisperse fractures which have all the same size.

The fracture size distribution often obeys a power law. The
percolation of such networks was studied by Mourzenko et
al. �10�. Again, a generalized form �3� of the dimensionless
density was successful in unifying the description of the per-
colation properties. In these terms, the critical density is
nearly invariant, over a wide range of shape and size distri-
bution parameters. Finally, Mourzenko et al. �11� studied the
permeability of these polydisperse fracture networks. A gen-
eral expression was proposed, which is the product of the
volumetric surface area, weighted by the individual fracture
conductivities, and of a fairly universal function of �3�, which
accounts for the influences of the fracture shape and size
distributions.

The present work is the extension and synthesis of these
earlier studies and it finally addresses the full complexity of
flow in permeable fractured media, by accounting for the
matrix flow and for the size polydispersity of the fractures.

The methodology follows that of Bogdanov et al. �7�. The
flow is governed by a Darcy’s equation in the rock matrix; it
is also described by a two-dimensional Darcy law in the
fractures, which are plane polygons randomly located and
oriented in space. However, unlike in this earlier work where
the fractures were assumed to be monodisperse, their sizes
are distributed according to a prescribed power law. The nu-
merical solution of the flow equations is conducted on a
tetrahedral mesh which preserves and contains the fractures.

The paper is organized as follows. The geometrical model
is described in Sec. II, where some geometrical notations are
also introduced. In particular, a dimensionless fracture den-
sity is defined, which controls the network percolation prop-
erties. The flow problem is described in Sec. III, and the
main results obtained for monodisperse fracture networks are
recalled. The numerical model is presented in Sec. IV. A
preliminary analysis based on earlier knowledge is con-
ducted in Sec. V, and is used as a guideline for the discussion
of the extensive set of data presented in Sec. VI, which is
relative to hexagonal fractures with identical permeabilities.
General models are proposed for the two regimes of loose
and dense networks, in terms of two parameters only, the
dimensionless fracture density and a weighted measure of
the volumetric area of fractures. Then, it is shown in Secs.
VII and VIII that these models also account for the influ-
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ences of the fracture shapes and of the size dependence of
their permeability, respectively. The main results are summa-
rized in Sec. IX.

II. GEOMETRICAL MODEL AND PERCOLATION
PROPERTIES

Consider a permeable matrix rock, which contains a
three-dimensional network of plane polygonal fractures, ran-
domly oriented and located in space with a volumetric num-
ber density �. Each fracture is characterized by its surface
area A, its perimeter P, and some measure R of its size,
which in the following is the radius of its circumscribed disk.

According to field observations ��2�, and references
therein�, many real probability densities of fracture sizes fol-
low a power law such as

n�R� = �R−a, �1�

where n�R�dR is the number of fractures with radius in the
range �R ,R+dR� and � is a normalization coefficient. It
should be emphasized that � depends on a, but also on Rm
and RM which makes it a non trivial quantity �cf. �11� for
precise expressions�, as well as the various moments of R. In
practice, the scaling exponent a ranges from 1.8 to 4.5 �12�,
and R varies in a large interval which can span five orders of
magnitude, but it is limited by the size RM of the largest
fractures in the system and by the size Rm of the microcracks.

The flow properties of such media are investigated here in
domains which widely exceed the size RM of the largest frac-
tures, an assumption which is not always verified in real
fracture networks. Hence, for the determination of an up-
scaled effective permeability, the fractured medium is ap-
proximated by a spatially periodic medium, made by the jux-
taposition of identical unit cells of size L and of volume �0,
with Rm�RM �L. This approximation corresponds to the
classical framework of the homogenization theory �cf. �13��.

Earlier works have shown the interest of defining a di-
mensionless measure of the fracture density, which makes
use of the concept of excluded volume in order to account
for the influence of the fracture shapes. Let us first recall the
definition of the excluded volume, which was introduced in
the context of continuum percolation by Balberg et al. �14�.

For a pair of objects F1 and F2, the excluded volume
Vex,12 is the volume around F1 which would be excluded for
the center of F2 if the objects were impenetrable. It can be
shown �2� that if the objects are two-dimensional, convex,
with areas Ai, perimeters Pi �i=1,2�, uniform random posi-
tions and uniform random orientations, the mean excluded
volume is

Vex,12 = 1
4 �A1P2 + A2P1� . �2�

For a set of identical polygons, this reduces to Vex=AP /2.
Anisotropic orientation distributions can easily be accounted
for, as shown by Adler and Thovert �2�. For a population of
objects with different shapes, a global mean excluded vol-
ume �Vex� can be obtained by averaging �2� over all the pairs
in the fracture population. Generally speaking, the fractures
are supposed to be statistically independent one from an-
other.

For networks of fractures with identical sizes, but possi-
bly different shapes, we may use �Vex� to define the dimen-
sionless fracture density ��,

�� = ��Vex� , �3�

where the angle brackets � � denote averages over the fracture
population. �� can be interpreted as a volumetric density,
since it is equal to the number of fractures per volume �Vex�;
however, �� also represents the mean number of intersections
per fracture with other fractures in the network, and as such,
it is a direct measure of the connectivity. Therefore, the defi-
nition �3� incorporates both volumetric and topological
aspects.

This definition proved very successful in unifying the
critical densities of networks of fractures with different
shapes �5�. It was also shown that many other geometrical
features, such as the volumetric density of blocks or the cy-
clomatic number, as well as the network permeability �6�
only depend on the density ��.

However, percolation of polydisperse fractures �or global
connectivity� is no longer controlled solely by the mean co-
ordination, and the definition of the percolation parameter
must be generalized. Since shape effects are well accounted
for by �Vex�, it is useful to rewrite Eq. �2� as

Vex = vex
R1R2

2 + R1
2R2

2
, �4�

where vex is a dimensionless shape factor. Then, the defini-
tion of the dimensionless density �� can be generalized as

�3� = ��vex��R3� . �5�

The subscript is a reminder of the statistical moment of R
involved in this definition. Of course, �3� reduces to �� for
monodisperse fractures.

Mourzenko et al. �10� have shown that the critical density
�3c� is fairly constant and equal to 2.4±0.1 for a wide range
of fracture shapes and size distributions, and values of the
exponent a in the interval 1�a�4. A corrective term was
also proposed for very elongated fracture shapes with isotro-
pic orientations. The case of anisotropic orientations will not
be addressed in this paper �see �15� for further references on
this topic�.

III. FLOW EQUATIONS

The physical model in the present paper is identical to that
of Bogdanov et al. �7�. Only its main features are recalled
here. The flow in the matrix rock is described by the Darcy
equations

v̄ = −
Km

�
� P, � · v̄ = 0, �6�

where � is the fluid viscosity, Km �L2� is the bulk permeabil-
ity, v̄ is the local seepage velocity in the porous matrix, and
P is the pressure.

The hydraulic properties of a fracture are assumed to be
quantified by a permeability 	 �L3�. Hence, the flow rate js
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per unit width is related to the surface pressure gradient �sP
by the two-dimensional Darcy’s law

js = −
	

�
�sP . �7�

The mass conservation equation for the flow in a fracture
reads

� · js = − �v̄+ − v̄−� · n , �8�

where n is the unit vector normal to the fracture plane; v̄+ is
the seepage velocity in the matrix on the side of n, and v̄− is
the seepage velocity on the opposite side.

This description can account for a variety of situations,
with open or partially clogged fractures �7�. In the simplest
case where the fractures are regarded as open channels, 	 is
given by the classical cubic law

	 =
b̄3

12
, �9�

where b̄ is some equivalent aperture. The cases where the
fracture is filled by some impermeable material or its walls
are clogged by some chemicals so the seepage velocity nor-
mal to the fracture induces a pressure drop are not considered
here. A detailed discussion on this subject is given by
Bogdanov et al. �7�.

Note that depending on the physical origin of the fracture
system as well as on its history �16–19� the fracture perme-
ability can be size dependent. The following scaling relation-
ship is assumed here:

	 = 	0� R

RM
�


, �10�

where 
 ranges from 0 to 6. The case of a variable conduc-
tivity along the fracture surface has not been addressed in the
present study.

The transport equations �6�–�8� must be supplemented
with macroscopic boundary conditions. As already men-
tioned, the fractured medium is approximated by a spatially
periodic structure. Hence, when a macroscopic pressure gra-
dient �P is exerted on it, the local fields v̄, js, and �P are
periodic functions of the space variable r. The overall seep-
age velocity v� is defined as the volume average of the local
velocities

v� =
1

�0
	


�m

v̄d� + 

Sf

jsds� , �11�

where �m is the matrix volume. Sf is the surface obtained by
projecting all the fractures on their mean plane; further de-
tails are given in �6�. This flux is linearly related to the pres-
sure gradient by an upscaled Darcy’s law �2�

v� = −
1

�
Keff · �P , �12�

where Keff �L2� is the effective permeability tensor of the
fractured porous medium.

The upscaled permeability Kn of the fracture network by
itself can also be introduced. It is relevant when the matrix

contribution to the flow can be neglected and it corresponds
to the steady-state effective permeability in dual porosity
models. Since only isotropic fracture orientation distributions
are considered here, the permeability tensors Keff and Kn are
spherical in the average, and they are simply denoted by the
scalars Keff and Kn. Since it does not account for the matrix
permeability, Kn is always smaller than Keff.

Koudina et al. �6� and Mourzenko et al. �11� studied the
network permeability Kn, for monodisperse and polydisperse
fracture size distributions, respectively. A general expression
was proposed,

Kn = ��	A�K2���3�� . �13�

It successfully represents the numerical predictions in a wide
range of fracture shapes �or mixture of shapes� and of the
scaling exponents a and 
. Kn involves two contributions.
The dimensional term � �	A� is the volumetric area of frac-
ture, weighted by the individual fracture permeabilities. The
second part is a fairly universal dimensionless quantity K2�
��3��, which accounts for the network connectivity and incor-
porates the effects of the fracture shape and of the fracture
size distribution. Unsurprisingly, it is a function of the same
quantity �3� that controls the network percolation. K2� was
described by an extensive set of numerical simulation results,
and by two heuristic analytic expressions, which provide
good representations of these data.

Dimensionless variables denoted by a prime are defined
by using three basic characteristics of the system, namely the
matrix permeability Km, a typical fracture permeability 	0,
and the largest fracture size RM,

R� =
R

RM
, 	� =

	

RMKm
, 	o� =

	o

RMKm
, Keff� =

Keff

Km
,

�14�

Kn� =
RM

	0
Kn.

IV. NUMERICAL MODEL

Again, the numerical implementation of the geometrical
and physical models is identical to that of Bogdanov et al.
�7�, except for the size polydispersivity of the fractures, and
it is described only very briefly.

The generation of the fracture network and the subsequent
percolation tests are similar to those presented by Huseby et
al. �5�. The fractures are randomly located in a cubic cell of
size L, with an isotropic distribution of their normal vectors.
These simplifications only provide a first approximation to
the complexity of real systems where fractures tend to grow
cooperatively leading to very strongly correlated structures;
moreover, the fractures have a tendency to terminate against
each other rather than to pass through each other. These ad-
ditional features modify the macroscopic properties as dis-
cussed by �20�.

Four values of the exponent a=1.5, 2, 2.5, and 2.9 have
been considered. The cell size was generally set to L�=4
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�L=4RM�, and sometimes to L�=6 or 8. The lower cutoff
was Rm� =0.1 �Rm=RM /10�, or slightly larger in a few nu-
merically demanding cases with large � and large a. The cell
contains Nfr=�L3 fractures, which can range from a few
units to about 1600 for a=2.9 and �3�=8 with L�=4, and to
almost 104 when a=2 and �3�=8 with L�=8. An example is
shown in Fig. 1.

The flow solution requires a meshing of the domain of
investigation, which is conducted in two steps. The fracture
network is triangulated first, with a typical edge length �.
This is done by use of an advancing front technique, as de-
scribed by Koudina et al. �6�. Fracture intersections are de-
termined first and explicitly included in the mesh, with nodes
along the intersection lines. Then, the matrix space between
the fractures is paved by an unstructured boundary-
constrained tetrahedral mesh, with the same typical edge
length �. Again, an advancing front technique is applied,
starting from the triangulated fractures. Unless otherwise
stated, �=RM /4; but, small fractures with a size R of the
order of � or smaller always contain at least four triangles.
As seen in the example displayed in Fig. 1, the numbers of
nodes and tetrahedra are typically of the order of 104 and
105, respectively, when L�=4, and proportional to L�3 in the
other cases. For instance, the largest mesh used in the present
work �a=2, �3�=8, L�=8� contains 171 000 nodes and more
than one million tetrahedra.

The transport coefficients 	 and Km can be prescribed on
a per element basis �triangular surface element of fracture,
tetrahedral volume element of matrix�. In the present case,
Km is uniform throughout the matrix and 	 is uniform over
each fracture, although it may depend on the fracture size
according to Eq. �10�.

Then, the flow equations are discretized in a first-order
finite volume formulation, with the control volumes centered
at the mesh nodes, where the pressures are determined. The
pressure gradient is assumed to be uniform over the fracture

surface elements and over the matrix volume elements. Ac-
cordingly, the flow rate is uniform in these elements and it is
given by the Darcy’s laws, Eqs. �6� and �7�. The resulting set
of linear equations is solved by the use of a conjugate gra-
dient algorithm.

For each set of parameters, Nr random realizations of
fracture networks are generated. As a rule, Nr=25; but, this
number has been reduced to 10 for large densities �generally
�3��5�, because of relatively smaller statistical fluctuations
of the results. Conversely, 100 realizations were used in the
transition range 1.3��3��3.6, where the coexistence of per-
colating and nonpercolating networks in the statistical set
induces large fluctuations.

The influence of the mesh resolution on the accuracy of
the numerical results varies according to the network density
and to the fracture permeability. The errors mainly originate
in the exchanges between the matrix and the fractures,
around their border lines. Hence, they are minimum when
the fracture network dominates the flow properties �dense
networks with large 	��. Conversely, they are maximum for
disconnected very conducting fractures, since the fluid trav-
els successively along the fractures and in the matrix in be-
tween. More details will be provided in Sec. VI about these
different situations. Let us just mention at this point that for
connected networks of very permeable fractures, the relative
accuracy of the computed permeability increment Keff� −1 in-
duced by the fracturation is of the order of �m� or better,
which is less than the statistical standard deviations when
�m� �1/4. Therefore, for the forthcoming systematic calcula-
tions of mean effective permeabilities as functions of the
fracture density, a discretization with �m� =1/4 was used un-
less otherwise mentioned; this is the best compromise be-
tween accuracy and statistical sample size, for a given com-
putational cost.

V. PRELIMINARY ANALYSIS

The permeabilities Keff and Kn depend on a set of param-
eters which can be detailed as follows. First, come the frac-
turation characteristics, namely the three parameters of the
fracture size distribution, a, Rm, and RM, the density � and
the fracture shape. Then, come the transport coefficients of
the matrix Km and of the fractures 	, or 	O and 
 for size-
dependent permeabilities. This list should be completed by
numerical parameters without physical meaning, such as the
grid resolution � and the finite size L of the periodic unit cell.
Their influence should of course vanish when they are set
small enough �for the former� or large enough �for the latter�.
This paragraph can be summarized by the relations

Keff,Kn = f�a,Rm,RM,�,shape,Km,	0,
,L,�� . �15�

However, earlier works cited in Secs. II and III concluded
that the influence on the percolation and flow properties of
the network of all the geometrical parameters can be sum-
marized by a single dimensionless density �3�, in addition to
the dimensional prefactor in Eq. �13�. Therefore, we may
expect the dimensionless permeabilities Kn� and Keff� to de-
pend on the following physical dimensionless parameters, in
addition to the artificial numerical ones:

0

2

4

−1
0

1
2

3
4
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5

XY

Z

FIG. 1. An example of a tetrahedral mesh of fractured medium,
with L�=4 and �3�=3.6. The fractures are hexagonal, with a=2.5,
Rm� =1/10, and ��=1/4. The sample contains 934 fractures, and the
mesh is made up of about 12 000 nodes and 76 000 volume ele-
ments. The visible fractures are white.
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Kn� = f1��3�,S,L�,���, Keff� = f2��3�,S,	0�,L�,��� , �16�

where

S = �RM
�	�A�

	0�
�=�RM�A� when 
 = 0� �17�

and

L� = L/RM, �� = �/RM . �18�

The forthcoming results will be discussed in these terms.
Note that S is a measure of the volumetric area of fracture in
the medium, weighted by the permeability of the individual
fractures.

Analytical results can be obtained in two asymptotic
cases, and used as guidelines for the discussion. Consider
first the limiting case of a very dilute fracture network. The
fractures are not connected, and their independent contribu-
tions to the permeability increase can be summed up. Since
each of these contributions is proportional to the cubed size
of the corresponding fracture, the leading order term in the
expansion of Keff� is proportional to the third moment �R3� of
the size distribution, or in other words, for given fracture
characteristics, to the density �3�,

Keff� = 1 + 
�3� + O��3�
2� ��3� � 1� . �19�

This is the classical form of a virial expansion, such as the
Maxwell’s formula for the conductivity of a material which
contains noninteracting spherical inclusions �21�. For circu-
lar, randomly oriented superconducting fractures �	�→��,
this yields �see for instance, �7,22��


 =
32

9�2 � 0.360 �disks, 	� = �� . �20a�

More generally, for ellipses with an aspect ratio f , it can be
deduced from the general solution for a superconducting el-
lipsoidal inclusion �23� that


 =
2e4

9f�K�e� − E�e���E�e� − f2K�e��
�ellipses, 	� = �� ,

�20b�

where e=
1− f2 and K and E are the complete elliptic inte-
grals of the first and second kind, respectively.

It seems that no analytical solution could be derived for
other fracture shapes, but Mansfield et al. �24� provide a set
of numerical results for regular polygons with three to eight
vertices, from which the coefficient 
 in �19� can be ob-
tained. It never departs by more than 4% from its value �20a�
for disks.

There is no result in the literature for fractures with finite
permeabilities, but again, as the sum of independent contri-
butions of individual fractures proportional to their cubed
size, the first-order term would be proportional to �R3� and
therefore to �3�.

In the opposite limit of very dense fracture networks,
when the fractures are highly interconnected and their whole
surface contributes to the flow, the effective permeability can
be deduced from the result of �25� for infinite plane fractures.
This yields in the case of an isotropic orientation distribution
�see Mourzenko et al. �11��

Keff� = 1 + 2
3	0�S, �3� � 1. �21�

Here, the main parameter is the volumetric fracture area,
which involves the second moment �R2� of the fracture sizes.
This result should apply in the limit of very dense networks,
regardless of the fracture shapes. Note also that the volumet-
ric area is the most accessible characteristic of a fracture
network, from a trace map or even from a mere line survey
�26�.

Several transition regimes should take place between
these two limiting cases of totally unconnected or intercon-
nected fractures. First, when �3� increases from zero, second-
and higher-order corrections to Eq. �19� should progressively
become significant. Then, a sharp transition should take
place when �3� increases beyond the critical density at which

0 2 4 6 8
10

−2

10
0

10
2

10
4

ρ′
3

K
′ ef

f−
1

FIG. 2. The dimensionless permeability increment Keff� −1 for
permeable media containing hexagonal fractures with a=2, 
=0,
	�=104, Rm� =1/10, L�=4, and ��=1/4. Dots are individual data per
realization and per flow direction. The lines join the averages of the
data, global per density, separately for percolating and nonpercolat-
ing networks.

1 2 3 4 5
0

0.2

0.4
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ρ′
3

Π
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L=4, a=1.5
L=4, a=2
L=4, a=2.5
L=4, a=2.9
L=8, a=2

FIG. 3. The fraction �p of percolating networks versus �3�, for
hexagonal fractures with a=1.5 ���, 2.0 ���, 2.5 ���, and 2.9 ���.
L�=4 �solid lines� or 8 �broken line�. Rm� =1/10, except for Rm�
=1/8 when ��3��2.5,a=2.5� or ��3��1.72,a=2.9�, and Rm� =0.15
when ��3��4.5,a=2.9�.
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the fracture networks start percolating, especially when 	�
�1, since the permeability Kn of the network by itself sud-
denly switches from zero to a finite value. Finite size effects,
i.e., an influence of the artificial parameter L in the numerical
model, can be expected in this situation. Since �3� is known to
control the percolation of the fracture network, it is expected
to remain a crucial parameter far beyond the range of Eq.
�19�. Finally, for large �3�, when the flow in the fracture net-
work dominates, Keff� should be close to 1+	�Kn�, with the
network permeability Kn modeled by Eq. �13�. Eventually,
for even larger fracture densities, Keff� should approach the
limit �21�.

An extensive set of results is presented first in the next
section, for hexagonal fractures with identical permeabilities
�
=0�, and discussed in relation with the previous analysis.
Then, it will be shown in Secs. VII and VIII that the formu-
lation in terms of the dimensionless parameters �3� and S can
also account for the fracture shape and the exponent 
.

VI. RESULTS FOR HEXAGONAL FRACTURES
WITH �=0

A. Preliminary overview

Before considering specific situations, let us give an over-
view of the typical trends. Fractured media were generated
for a set of target densities �3� up to 8. Data for hexagonal
fractures, with a=2, 
=0, 	�=104, Rm� =1/10, L�=4, and
��=1/4 are given in Fig. 2. The number of network realiza-
tions depends on the range of the density �3�: Nr=25 for �3�
�1.3 and for 3.6��3��5; Nr=100 for 1.3��3��3.6; Nr
=10 for �3��5. Since the flow calculations have been con-
ducted along the x, y, and z directions, the number of data is
3Nr.

The individual effective permeabilities, per realization
and per direction are given in Fig. 2 as functions of the actual
density �3� of the generated fracture networks, together with
their statistical averages. Separate averages for percolating
and nonpercolating fracture networks are also shown in the
figure, which make clear that a gradual transition takes place
between two branches in a range of intermediate densities.

The fraction �p of percolating networks is plotted in Fig.
3 as a function of �3�. It switches from zero to one when the

density increases from �3��2 to �3��4. Note that nearly
identical curves are obtained for other values of a ranging
from 1.5 to 2.9, which illustrates that the dimensionless den-
sity �3� summarizes very efficiently the influence of the size
distribution on the percolation properties of fracture net-
works, as already demonstrated by Mourzenko et al. �10�.
The width of this transition region is of course size depen-
dent, and it decreases as L� increases. This is clearly shown
in Fig. 3 by the additional data for L�=8 which will be dis-
cussed in Sec. VI D.

In the following, the word “loose” packing refers to the
density range where �p�0, as opposed to dense packings,
when �p�1. These two ranges are separated by the transi-
tion region.

Figure 4 provides the counterparts of Fig. 2 for the expo-
nents a=1.5 and 2.9 �see also Fig. 5�d� for a=2.5�. The other
parameters are unchanged, except for Rm� which is slightly
larger in some of the most demanding cases, when both a
and �3� are large. Very similar pictures are obtained in all
cases.

Figure 5 presents data for a=2 and for 	� ranging be-
tween 10 and 104. All other parameters are kept identical to
those in Fig. 2. The large ratio �about 100 when �3��3� ob-
served in Fig. 4 between the two branches for percolating
and nonpercolating networks when 	�=104, rapidly dimin-
ishes for smaller 	�. This ratio is about 10 when 	�=103, and
it increases up to about 100 when 	�=102; the difference
nearly vanishes for 	��10. Plots similar to Fig. 5 for other
values of the exponent a �not shown here� display exactly the
same features.

It is interesting to note that fractures with 	� of the order
of 10, with a density in the transition range 2��3��4, have
the same impact on the fractured medium effective perme-
ability, whether they constitute a percolating network or not.
This feature was already noticeable in Figs. 6 and 8 of
Bogdanov et al. �7� for monodisperse fracture networks, al-
though it was not stressed in the discussion.

Let us now examine more closely particular situations
which correspond to various ranges of fracture density.

B. Dilute limit

As discussed in Sec. V, a small concentration of fractures
induces a permeability increment which is proportional to
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2.9 �b�. The other parameters are identical to those in Fig. 2, except in �b� for Rm� =1/8 when �3��1.72 and Rm� =0.15 when �3��4.5. Same
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the concentration �Eq. �19��. The coefficient 
 depends both
on the fracture shape and on their permeability 	�. Since the
dependence on the shape is investigated in Sec. VII, only
hexagonal fractures are considered in this section, over the
whole range of 	�.

In the dilute limit, there is no hydraulic interactions be-
tween the fractures. The disturbances that they induce in the
flow pattern with respect to the flow in the intact matrix can
be evaluated independently, and the corresponding contribu-
tions to the permeability increase can be simply summed up.
If a very large volume � contains N identical randomly ori-
ented fractures, the upscaled Darcy’s law �12� reads

v� = −
1

�
�Km +

1

�
�
i=1

N

ki� · �P . �22�

The fracture contributions ki are all random rotations, ac-
cording to the fracture orientations, of a tensor of the form

k = �k� 0 0

0 k� 0

0 0 k�

� , �23�

where k� and k� correspond to the directions parallel and
normal to the fracture plane, respectively.

In the limit of large N, the summation in Eq. �22� can be
replaced by the statistical average ��ki� which is a spherical
tensor, since the fracture orientations are isotropically dis-
tributed. Furthermore, all the tensors ki have the same trace
2k� +k�, and this applies also to their average.

Hence, the determination of the coefficient 
 in Eq. �19�
only requires the knowledge of the trace of the tensor k,
which represents the influence of a single fracture in an in-
finite medium. As discussed in Sec. V, k is known analyti-
cally in a few simple cases, when 	�=�. It can be calculated
numerically in other situations, by considering a single frac-
ture in a domain large enough to be regarded as unbounded.
In practice, a single fracture was put in a unit cell with spa-
tially periodic boundary conditions. Preliminary calculations
showed that the data for L�=6 were very close to the ones
with L�=4, and the results in a few cases for L�=6 and L�
=8 were found identical. Therefore, the systematic data pre-
sented in the following were obtained for L�=6.

The ratio �Keff� −1� /�3�, which corresponds to the coeffi-
cient 
 in Eq. �19�, is plotted as a function of 	� in Fig. 6.
The data are obtained with various mesh resolutions �m�
=1/4, 1 /8, and 1/16, and they are extrapolated to �m� →0.

Significant discretization errors of the order of 2�� are
observed when 	��1. Various tests show that the flow
around the fracture edges is not accurately calculated. Hence,
the most efficient improvement of the results would not re-
sult from a refinement of the mesh in the fractures, but in-
stead in the matrix near their edges. In practice, the fractures
behave as if their radii were increased by � /2. For moderate
	�, the relative error decreases, and it never exceeds a few
percent when 	��1.

The coefficient 
 is found nearly constant when the frac-
ture permeability is larger than 10, and equal to the coeffi-
cient 
� for superconducting fractures. The extrapolated
value 0.335 obtained for 	�=104 is 4% smaller than the re-
sult 
�=0.349 of Mansfield et al. �24�. For less permeable
fractures, 
 decreases, and ultimately becomes proportional
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FIG. 5. Dimensionless perme-
ability increment Keff� −1 for per-
meable media containing hexago-
nal fractures with a=2.5 and 	�
=10 �a�, 102 �b�, 103 �c�, and 104

�d�. The other parameters are
identical to those in Fig. 2, except
for Rm� =1/8 when �3��2.5. Same
conventions as in Fig. 2.
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to 	�. These variations are well described by the following
empirical expression:


 =
	�

	� + 3/2

�. �24�

A comparison of this model with the numerical data is pro-
vided in Fig. 7, where the ratio 
 /	� is plotted as a function
of the dimensionless fracture permeability. The data are
slightly scattered for the very small values of 	�, probably
because the permeability increment is so small that accumu-
lated round-off errors start influencing the results.

C. Small densities

When the fracture density increases, it can be expected
that additional terms play a role in the expansion �19�, be-
cause the perturbations in the flow pattern due to the indi-
vidual fractures interact, and also because some of the frac-
tures are connected. Recall that for a monodisperse network
�3� is exactly the mean number of intersections per fracture,
and that for polydisperse networks it is also a measure of the
connectivity.

Numerical data for polydisperse networks, with various
exponents a, moderate densities �3� and 	�=1, 10, and 100,

are compared in Fig. 8 to a simple generalization of �19�
which includes a quadratic term

Keff� = 1 + 
�3� + 
2�3�
2, �25�

where 
 is deduced from Eq. �24� with 
�=0.335. The oc-
currence of the same coefficient in the first- and second-order
terms is fortuitous. The data for 	��100 are not displayed,
because they are nearly identical to that for 	�=100. Since
the numerical data have been obtained with ��=1/4, the dis-
cretization errors can be significant, especially when 	� is
large. Instead of correcting them as done in Figs. 6 and 7 by
extrapolating to ��→0, they are plotted in Fig. 8 versus a
modified density �3,app� which accounts for the larger appar-
ent size R+� /2 of the fractures.

Equation �25�, which involves a single parameter 
�, is
seen to be fairly successful in representing the permeability
of moderately fractured media for �3��2, i.e., when the frac-
ture networks never percolate. This result will be generalized
in Sec. VII for other fracture shapes.
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D. Transition range

As already mentioned, when L�=4, the percolation prob-
ability �p of the networks progressively increases from zero
to one in the range of density �3�=2–4, for 1.5�a�2.9 �Fig.
3�. When a spanning cluster of fractures exists, it constitutes
a preferential path which dominates the flow properties of
the fractured medium when the fracture permeability 	� is
large. Accordingly, two branches separated by nearly two
decades exist in the curves in Figs. 2 and 4 for the effective
permeability averaged either over the percolating or over the
nonpercolating networks. Recall however that the separation
between the two branches decreases for less permeable frac-
tures, and nearly vanishes when 	��10 �Fig. 5�. Hence, a
real transition occurs only for very large 	�, as for networks
of resistive bonds �see the classical calculations of �27��.

On the other hand, the range of density over which the
transition takes place depends on the system size, as is well
known from percolation theory �28�. The coexistence of per-
colating and nonpercolating networks in a statistical set with
the same density is a finite-size effect. The width � of the
transition region decreases as L� increases, and ultimately,
when L�→�, �p switches abruptly from zero to one when
�3� reaches the percolation threshold �3c� . Not only � depends
on the system size, but also the density for which the perco-
lation probability is 0.5. Mourzenko et al. �10� found it equal
to about 2.9 and 2.6 for L�=4 and 8, respectively, and it
converges to the percolation threshold �3c� =2.4 when L� fur-
ther increases.

All these effects are illustrated in Figs. 3 and 9, where
data for L�=8 are compared to those for L�=4, when a=2.
The transition of the percolation probability from 0 to 1 is
indeed steeper, and �p reaches 1/2 for �3��2.6 instead of 2.9
�Fig. 3�. Accordingly, when 	��1, the transition of the mean
effective permeability Keff� takes place in a narrower range of
densities �Fig. 9�.

However, out of the transition range 2.1��3��3, the
mean permabilities are identical for L�=4 and 8, which
shows that the data are not affected anymore by any finite
size effects. For moderate 	�, when two branches could not
be distinguished in Fig. 5, identical results for �Keff� � are ob-
tained with L�=4 and 8, over the whole range of fracture
densities �not displayed here�.

E. Dense networks

Before proceeding any further, it is necessary to complete
the discussion of the numerical discretization effects, which
was sketched in Sec. IV and developed in more detail in Sec.
VI B for the dilute case. An illustrative set of results is pre-
sented in Fig. 10 for fracture networks with a scaling expo-
nent a=1.5. The calculations have been conducted with ��
=1/4 ,1 /8, and 1/16, and with 	�=1 and 103.

When 	�=1, the various discretization parameters yield
three curves which are slightly shifted vertically. By compar-
ing with an extrapolation toward ��→0, the numerical error
is found of the order of �� or better, whatever �3�.

The situation is different when 	��1, since different be-
haviors are observed for percolating and nonpercolating net-
works. For percolating networks, the relative error is found
again better than ��. It can be significantly smaller when �3�
and 	� are large, i.e., when fracture flow truly dominates the
effective permeability. Larger errors, of the order of 2��,
occur in the low density range, which are discussed in Sec.
VI B.

The poorest accuracy is observed in the transition range,
for nonpercolating networks. The permeabilities calculated
with 	�=2 can be overestimated by a factor of 2. This can be
understood when it is recalled that the errors are mostly due
to the exchanges between the fracture edges and the matrix.
A fracture network in a subcritical state contains many rela-
tively large, but unconnected clusters, and the effective per-
meability is controlled by the gaps which the fluid must cross
when hopping from a very conducting fracture cluster to the
next one, through the regions where the description is the
least accurate.

However, the lesser performances of the numerical code
in this particular situation are not very important, for at least
two reasons. First, as discussed in Sec. VI D, the existence of
a wide transition range is a consequence of the limited size
of the numerical samples. On the other hand, in this region,
the main criterion is whether the network percolates, in
which case the permeability is large and correctly evaluated,
or not, in which case the permeability is much smaller. In
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particular, the actual value of Keff for the nonpercolating net-
works has a very small impact over the statistical average
which is dominated by the percolating ones and their prob-
ability �p of occurrence.

All in all, the uncertainty of the results presented in this
paper, which is generally of the order of ��, should always be
compared with the huge variations of the effective perme-
ability, which span several orders of magnitude. Therefore,
this uncertainty has little practical consequence.

When the probability of percolation is close to one, a
preferential flow path through the fractures nearly always
exists. Its permeability has been studied by Mourzenko et al.
�11�. When Kn widely exceeds Km, it dominates the effective
permeability of the fractured medium. This may occur either
because 	��1, even for a moderate density �3�, or because
the fracturation is very dense, even if 	� is moderate. Since
Kn is proportional to the fracture permeability, Keff� −1 should
be proportional to 	�. More precisely, in this limit, the effec-
tive permeability is expected to converge toward

Keff� � 1 + 	�Kn� �Kn � Km� . �26�

This trend is confirmed in Fig. 11, where the increments
Keff� −1 obtained for networks of hexagonal fractures with
various exponents a and 	� ranging from 1 to 104 are plotted
as functions of �3�. The data in Fig. 11�a� are mostly influ-
enced by 	�, whereas they tend to converge toward a com-
mon asymptote in Fig. 11�b�, where Keff� −1 is normalized by
	�. The curves for �Keff� −1� /	� are close together as soon as

�3��4, when 	��100. For less permeable fractures, a larger
density is required to reach this regime. For instance, for
	�=10, 	�Kn� is of the order of a few units when �3�=8 and
for this value the curves for �Keff� −1� /	� join with the curves
for larger 	�.

Mourzenko et al. �11� found that the network permability
Kn is proportional to the volumetric area S of fractures.
When Eq. �13� is introduced into �26�, it yields

Keff� � 1 + 	�SK2���3�� . �27�

A direct comparison of the numerical data for
�Keff� −1� /	�S is made in Fig. 12 with an analytical expres-
sion which provides a good approximation of Kn �11�,

K2� =
2

3
�1 −

10

�3� + 6.6
� . �28�

This model clearly captures the trend of the effective perme-
ability of the fracture medium when the fracture flow is pre-
dominant. For comparison, some data of Mourzenko et al.
�11� for Kn in the case of a=2.9 are recalled in Fig. 12.

It was not possible to reach computationally the regime
where Keff� is governed by Eq. �22�, which seems to require
�3��20, but nevertheless, this expression is a likely asymp-
tote for the numerical data, for all exponents a and all frac-
ture permeabilities 	�, as shown by Fig. 12. Note that the
model ��13� and �28�� reduces to �21� when �3�→�.

It can also be noticed that the normalization by S totally
eliminates the slight vertical shift between the curves in Fig.
11 with identical 	�, but different exponents a. Recall that
�	A� in Eq. �13� involves the moment �R2� instead of �R3�
which is incorporated in �3�. The plot in Fig. 12 shows that
the influence of this second geometrical parameter, and more
generally of the fracture size distribution, is well accounted
for by the decomposition �27�, even when the matrix signifi-
cantly or predominantly contributes to Keff. Hence, the gen-
eral dependence �16� can be written as
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Keff� = 1 + 	�SK2���3�,	�� , �29�

where K2���3� ,	�� reduces to K2���3�� when the network perme-
ability dominates. Recall that the domain size L� which ap-
pears in the argument list in �16� does not play any role in
the dense regime when L��4, as shown in Sec. VI D.

The form of K2� can be investigated by considering the
gradual transition which seems to take place for large densi-
ties between a permeability increment K2� for large 	� and a
permeability increment 2 /3 for small 	�. It can be quantified
by the ratio �,

� =

2

3
−

Keff� − 1

	�S
2

3
− K2�

. �30�

This ratio is plotted in Fig. 13. All the numerical data with
���4 presented in Fig. 12 are displayed, and they are seen
to gather remarkably onto a single curve, regardless of the
density �3� and of the exponent a. A heuristic, but successful
model for these data can be proposed as

� �
1

1 + 7
3	�−0.7

. �31�

Eventually, the permeability increment K2� in �29� induced by
fractures in a permeable medium is given by

K2���3�,	�� =
2

3
− ��	���2

3
− K2���3��� �

2

3
−

2
3 − K2���3��

1 + 7
3	�−0.7

�32�

��3� � 4� .

This formula is valid for all the cases previously investi-
gated, as soon as the density is large enough. Its predictions
are directly compared to the numerical data in Fig. 14, and
an excellent agreement is observed for �3��4.

In the following sections, the influence of the fracture
shapes and of the permeability exponent 
 will be investi-
gated, in order to see if they fit into this general model.
However, it might be useful to first check the influence of a

parameter which has not been studied yet, namely the lower
cutoff radius Rm, i.e., the broadness of the fracture size dis-
tribution.

Recall that its influence on the network permeability Kn
was shown by Mourzenko et al. �11� to be well described by
the decomposition �13�, for various size distributions includ-
ing monodisperse; therefore, in view of �27� or �29�, it is also
incorporated in the two parameters S and �3� when the net-
work permeability dominates Keff. A few additional examples
are provided in Fig. 15.

First, data for nonpercolating monodisperse networks in
the range �3��3 are compared to those for a=1.5 with Rm�
=1/10. Of course, this situation was not considered by
Mourzenko et al. �11� since the resulting Kn is equal to zero;
but, the results for Keff are found in very good agreement.
Then, a few networks with a=1.5 or 2.9 were generated with
Rm� =1/20, and progressively modified by removing the
smallest fractures, i.e., by increasing Rm� up to 1/4 and
thereby decreasing �3�. The permeabilities calculated with
	�=10 and 104 are seen in Fig. 15 to be very close to the
values of �Keff� � calculated as a function of �3� when Rm� is
kept constant and equal to 1/10. Finally, the permeabilites of
percolating or nonpercolating networks directly built with
Rm� =1/4 also agree with the mean values obtained with Rm�
=1/10, over the whole range 	�=1–104.

VII. INFLUENCE OF THE FRACTURE SHAPE

A. Dilute networks

As for the hexagonal fractures discussed in Sec. VI B,
dilute networks have been addressed for other fracture
shapes by considering a single fracture in the unit cell �0 of
the periodic medium. Again, the diagonal components of the
resulting anisotropic permeability tensor have been averaged
in order to obtain the value of Keff� expected for a set of
noninteracting, randomly and isotropically oriented fractures
in an infinite medium. The following data have been ob-
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tained with L�=6, but systematic calculations with L�=4 and
some with L�=8 checked that this dilution is sufficient in
order for the second-order term in �19� to have a negligible
contribution to Keff� .

A large variety of shapes has been considered, including
regular polygons �triangles, squares, hexagons, icosagons�,
rectangles, and ellipses with aspect ratios 2, 4, and 8. These
objects are isotropically distributed in space. The numerical
errors induced by the discretization effects have been dealt
with in the same way as for hexagons in Sec. VI B, i.e., the
computations have been repeated with ��=1/4, 1 /8, and
1/16, and the data extrapolated toward ��→0.

An example is shown in Fig. 16 for very permeable frac-
tures with 	�=104, which can be considered as a supercon-
ducting case, as seen in the following. The coefficient 
 in
the expansion �19� is plotted as a function of the shape factor
vex/�2, which decreases from one for disks to zero as the
fracture shape becomes more irregular.

The discretization errors are large in some cases, espe-
cially for the most slender rectangles, but the extrapolation is
successful in correcting them. The extrapolated values for
ellipses are very close to the theoretical result �20b�, and
those for polygons are also close to the numerical data of
Mansfield et al. �24�, when available, i.e., for regular poly-
gons with three to eight vertices. All the data presented in the
rest of this section are obtained by the same extrapolation
technique.

It can be noted that the dependence of 
 for ellipses in
�20b� on the aspect ratio suggests that the shape factor vex
included in the definition of �3� is not the most appropriate
one in the general case for noninteracting fractures. How-
ever, as already noted about the results of Mansfield et al.

�24�, 
 varies very little over the range 0.3�vex/�2�1,
which covers the elongated rectangles or ellipses with aspect
ratios up to 3. Hence, for most practical applications, the
value 
�0.36 for disks �see Eq. �20a�� can be applied with a
relative error smaller than a few percent. Therefore, it is
possible and desirable in view of its prominent role in the
other regimes to use �3� to quantify the fracture density in this
regime as well. For very slender shapes, a very good ap-
proximation can be obtained by using the expression �20b�.

Data for less permeable fractures, with 	�=1 to 104, are
shown in Fig. 17. There is little difference between the re-
sults for all the values of 	��100, but the coefficient 

noticeably decreases for smaller values, and especially for
the most slender fracture shapes. The range where the value
of 
 for disks can be reasonably applied widens and progres-
sively encompasses more and more elongated fracture
shapes.

Therefore, for practical purposes, 
 can be fairly accu-
rately estimated by the heuristic formula �24� which was pro-
posed for hexagons, in a range 0.3�vex/�2�1 for very con-
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ducting fractures, or even wider when they are less
permeable.

B. Dense networks

The influence of the fracture geometry for dense networks
is investigated by considering regular triangles, squares, and
icosagons �20-gons�, as well as rectangles with an aspect
ratio of 4. In all cases, the fracture size is quantified by the
radius R of their circumscribed circle.

A set of data for a=1.5 is compared in Fig. 18 to the
corresponding results for hexagonal fractures. In each case,
10 realizations are considered, and the effective permability
is calculated over the three directions x, y, and z. The re-
ported data are the averages of the 30 resulting values, or
separately over the cases of percolating and nonpercolating
networks, when applicable. Three densities �3�=2.2, 4.3, and
6.5 are tested, and the conductivity 	� is varied from 1 to
104. Only the results for 	�=104 are reported, since for this
value the fracture shape is expected to have the largest influ-
ence.

The data in Fig. 18 are expressed in terms of the normal-
ized permeability increment �Keff� −1� /	�S, since it is the
quantity which is expected to depend only on �3�, according
to Eq. �27�. This is indeed perfectly verified for all the frac-
ture shapes when �3��4.

In the transition region for �3�=2.2, it is also verified for
squares and icosagons. However, the data for rectangles and
in a lesser respect for triangles deviate more from the results
for hexagons. This is not surprising, for two reasons. First,
the discretization errors are maximum in this range and they
should influence the two shapes which are the most departing
from circularity since they originate at the fractures edges.
Second, Mourzenko et al. �10� showed that the finite size
effects, which are significant in this range of density, depend
on the fracture shape.

Other values of the parameters were studied. Data for
squares are shown in Fig. 19, obtained under the same con-

ditions with a=2.5; they are also found in perfect agreement
with those for hexagons. The same comments apply for
smaller values of 	� �not displayed�, for a=1.5 and 2.5, ex-
cept that the deviations in the transition zone decrease.
Therefore, �27� indeed accounts for the effect of the shape of
very conducting fractures, and in addition, its extension �29�
with �32� also applies when 	� is small or moderate.

VIII. INFLUENCE OF THE PERMEABILITY
EXPONENT �

In this brief section, a few illustrative results are provided
for size-dependent fracture permeabilities. Only dense net-
works of hexagonal fractures are considered, since in the
dilute limit the contributions of the individual fractures are
independent. Therefore, at least to first order, the influence of

 can be accounted for by generalizing Eq. �24� as


 = � 	��R�
	��R� + 3/2

�
�. �33�

The exponent 
 was set to 1.5, 3, and 6, which are the
values previously investigated by Mourzenko et al. �11�
when studying the network permeability Kn. The data dis-
played in Fig. 20 are the permeabilities averaged over the
three directions in 24 random realizations, with a=1.5, Rm�
=0.1, and 	0�=1–104.

First, the permeability increments Keff� −1 are displayed in
Fig. 20�a�. They are seen to decrease when 
 increases,
which is expected since the fracture permeabilities become
smaller and smaller �see Eq. �10��. Then, the same data are
plotted in Fig. 20�b�, in the form of �Keff� −1� /	�S. The
weighted volumetric area S incorporates a contribution of 

�see Eq. �17��, through the ponderation by 	�R� of the frac-
ture areas. This normalization is seen to unify the results for
all the values of the exponent 
. The data for the extreme
case 
=6 when 	0�=104 are slightly smaller, by a factor of
about 2 /3, but this is a very small difference when compared
to the ratio of 1 /10 in the corresponding cases in Fig. 20�a�.

The same kind of calculations with an exponent a=2.5
yield very similar results, which are not displayed here. In-
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stead, the ratio � �see Eq. �30�� for all the available data is
shown in Fig. 21, as a function of 	0�. All the data of Fig. 20
for a=1.5 are shown, together with additional ones for other
values of 	0�, and a full set of data obtained in the same
conditions with a=2.5.

The data are more scattered around the model �31� than
for 
=0 in Fig. 13, with deviations of the order of ±0.1, but
this corresponds to relative errors smaller than 20% for 	0�
�10 and smaller than 10% for 	0��102. Part of the devia-
tions for small 	0� may originate in round-off errors, since the
permeability 	� of the smallest fractures is very small. Recall
also that for fracture networks in impermeable materials,
Mourzenko et al. �11� found that Eq. �13� cannot be applied
when both exponents a and 
 are large, and that this feature
probably applies to Keff as well.

With this reservation, and all due caution in view of the
limited number of investigated cases, we may conclude that
S in Eq. �27� satisfactorily accounts for the influence of the
exponent 
 on the macroscopic effective permeability. This
also applies to the extension ��29� and �32�� of this model.

IX. CONCLUSION

The effective macroscopic permeability of fractured po-
rous media has been investigated numerically for a wide

range of parameters which include the fracture density, shape
and size distribution, and the permeability, possibly size de-
pendent, of the fractures.

The results have been discussed and rationalized in terms
of the two parameters �3� �5� and S �17�. The former is a
dimensionless measure of the density of fractures, which is
known from earlier works to control the percolation and
many other properties of the fracture networks, and which
incorporates the influence in this respect of the fracture shape
and size distribution. The latter is a measure of the volumet-
ric area of fractures in the medium, weighted by the indi-
vidual permeabilities, and can thereby account for their size
dependence.

Unified models could be proposed in two regimes, which
fit fairly well the numerical data throughout the investigated
range of the parameters, except for very elongated fracture
shapes and for extreme dependences of the fracture perme-
ability on their size.

For loose networks, which do not percolate, the macro-
scopic effective permeability Keff� can be estimated by the
quadratic expansion �25�, where the coefficient 
 can be ob-
tained from the heuristic formula �24� and from its value
�20a� for superconducting circular fractures.

For dense networks, when percolation is nearly certain,
Keff� is given instead by the general expression �29�, where K2�
can be obtained from the heuristic formulas �28� and �32�.

The intermediate transition range was less thoroughly in-
vestigated, but its width decreases as the domain size in-
creases, and it ultimately vanishes for infinite media. Further-
more, it was shown that except for extremely permeable
fractures, the percolation status does not significantly influ-
ence the average effective permeability.

Finally, it can be noted that the parameters Rm, RM and a
of the fracture size distribution are embodied in the global
quantities �3� and S, but do not appear explicitly in the mod-
els �25� or �30�. Therefore, these models can be expected to
apply for other types of size distribution function.

This work could be extended in many ways and the most
interesting path certainly consists in modeling more precisely
real systems. As already mentioned, the first important prop-
erty is the heterogeneity of the porous matrix which was
assumed to be constant in this paper; in real systems, matrix
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porosities and permeabilities are distributed. Two types of
media can be easily generated, namely correlated or layered
media. Therefore, interesting interactions between various
length scales are expected.

Another extension closely related to the previous ones
concerns the spatial distribution of fractures which tend to
grow cooperatively leading to strongly correlated structures
�20�. Moreover, again because of their generation under
stresses, fractures are not usually isotropically distributed.

This feature which has already been addressed in �15�,
should yield interesting extensions of these properties.
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